messenger ribonucleic acid
简明释义
信使核糖核酸
英英释义
Messenger ribonucleic acid (mRNA) is a type of RNA that conveys genetic information from DNA to the ribosome, where proteins are synthesized. | 信使核糖核酸(mRNA)是一种RNA,传递从DNA到核糖体的遗传信息,在那里合成蛋白质。 |
例句
1.The role of messenger ribonucleic acid in cellular processes is crucial for understanding biology.
理解生物学时,信使核糖核酸在细胞过程中的作用至关重要。
2.Therapeutic applications of messenger ribonucleic acid are being explored in the treatment of genetic disorders.
在治疗遗传疾病方面,正在探索信使核糖核酸的治疗应用。
3.In the laboratory, scientists can isolate messenger ribonucleic acid to study gene expression.
在实验室中,科学家可以分离信使核糖核酸以研究基因表达。
4.Researchers are studying how messenger ribonucleic acid can be used to develop new vaccines.
研究人员正在研究如何利用信使核糖核酸开发新疫苗。
5.The process of protein synthesis begins with the transcription of messenger ribonucleic acid, which carries genetic information from DNA.
蛋白质合成的过程始于转录信使核糖核酸,它将遗传信息从DNA携带过来。
作文
In the realm of molecular biology, messenger ribonucleic acid (mRNA) plays a critical role in the process of gene expression. It serves as the intermediary between DNA and proteins, which are essential for the functioning of all living organisms. Understanding the function of messenger ribonucleic acid is fundamental for both researchers and students alike, as it opens doors to advancements in biotechnology and medicine.The journey of messenger ribonucleic acid begins in the nucleus of the cell, where DNA resides. When a gene is activated, an enzyme called RNA polymerase binds to the DNA and synthesizes a complementary strand of mRNA. This process is known as transcription. The newly formed mRNA strand carries the genetic information required to produce a specific protein. After transcription, the mRNA undergoes several modifications, including the addition of a 5' cap and a poly-A tail, which protect the molecule and facilitate its export from the nucleus into the cytoplasm.Once in the cytoplasm, messenger ribonucleic acid serves as a template for translation, the next step in protein synthesis. Ribosomes, the cellular machinery responsible for assembling proteins, read the sequence of nucleotides in the mRNA. Each set of three nucleotides, known as a codon, corresponds to a specific amino acid. Transfer RNA (tRNA) molecules transport the appropriate amino acids to the ribosome, where they are linked together to form a polypeptide chain. This chain then folds into a functional protein, completing the process initiated by messenger ribonucleic acid.The significance of messenger ribonucleic acid extends beyond basic biology; it has far-reaching implications in the field of medicine. For instance, the development of mRNA vaccines, such as those used to combat COVID-19, has revolutionized vaccine technology. These vaccines utilize synthetic messenger ribonucleic acid to instruct cells to produce a harmless piece of the virus, prompting an immune response without causing disease. This innovative approach showcases how understanding messenger ribonucleic acid can lead to breakthroughs in public health.Moreover, research into messenger ribonucleic acid also contributes to our understanding of genetic disorders. Mutations in the DNA that affect mRNA production or function can lead to various diseases. By studying these alterations, scientists can develop targeted therapies that address the underlying causes of these conditions. Thus, the study of messenger ribonucleic acid is not only vital for comprehending biological processes but also for advancing therapeutic strategies.In conclusion, messenger ribonucleic acid is a pivotal component of molecular biology that facilitates the flow of genetic information from DNA to proteins. Its role in transcription and translation underscores its importance in cellular function and development. Furthermore, the applications of messenger ribonucleic acid in vaccine development and disease research highlight its potential to drive innovation in medicine. As we continue to explore the intricacies of messenger ribonucleic acid, we unlock new possibilities for improving health and understanding life at a molecular level.
在分子生物学领域,信使核糖核酸(mRNA)在基因表达过程中发挥着至关重要的作用。它作为DNA和蛋白质之间的中介,对于所有生物体的功能都是必不可少的。理解信使核糖核酸的功能对研究人员和学生来说都至关重要,因为这为生物技术和医学的进步打开了大门。信使核糖核酸的旅程始于细胞核,DNA栖息于此。当一个基因被激活时,一种叫做RNA聚合酶的酶会与DNA结合,并合成一条互补的mRNA链。这一过程被称为转录。新形成的mRNA链携带着生产特定蛋白质所需的遗传信息。在转录后,mRNA经历几次修饰,包括添加5'帽和多腺苷酸尾,这些修饰保护了分子并促进其从细胞核导出到细胞质中。一旦进入细胞质,信使核糖核酸作为翻译的模板,在蛋白质合成的下一个步骤中发挥作用。核糖体是负责组装蛋白质的细胞机器,它们读取mRNA中的核苷酸序列。每组三个核苷酸称为密码子,对应于特定的氨基酸。转运RNA(tRNA)分子将适当的氨基酸运输到核糖体,在那里它们被连接在一起形成多肽链。这个链随后折叠成一个功能性蛋白质,完成了由信使核糖核酸启动的过程。信使核糖核酸的重要性超越了基础生物学;它在医学领域有着深远的影响。例如,用于对抗COVID-19的mRNA疫苗的开发,彻底改变了疫苗技术。这些疫苗利用合成的信使核糖核酸指示细胞产生病毒的一部分,无需引起疾病,就能促使免疫反应。这种创新的方法展示了理解信使核糖核酸如何导致公共卫生领域的突破。此外,对信使核糖核酸的研究也有助于我们理解遗传疾病。影响mRNA产生或功能的DNA突变可能导致各种疾病。通过研究这些变化,科学家可以开发针对这些疾病根本原因的靶向疗法。因此,研究信使核糖核酸不仅对于理解生物过程至关重要,而且对于推进治疗策略也是如此。总之,信使核糖核酸是分子生物学的关键组成部分,促进了遗传信息从DNA到蛋白质的流动。它在转录和翻译中的作用突显了它在细胞功能和发育中的重要性。此外,信使核糖核酸在疫苗开发和疾病研究中的应用强调了它推动医学创新的潜力。随着我们继续探索信使核糖核酸的复杂性,我们为改善健康和理解分子层面的生命开启了新的可能性。
相关单词