nucleophiles
简明释义
英[ˈnjuːkliəfaɪlz]美[ˈnuːkliəˌfaɪlz]
亲核物质
英英释义
单词用法
强亲核试剂 | |
弱亲核试剂 | |
亲核取代反应 | |
亲核攻击 | |
亲核试剂和亲电试剂 | |
亲核试剂的类别 | |
亲核试剂的特性 | |
有机化学中的亲核试剂 |
同义词
反义词
亲电试剂 | Electrophiles are species that seek electrons and can accept electron pairs. | 亲电试剂是寻求电子并能够接受电子对的物质。 |
例句
1.Abstract : this article reviews recent progress in nucleophilic reactions of the - carbon in vinylidene ruthenium complexes. the nucleophiles include alkene, alkyne, alcohol, acid, amine, water, etc.
文摘:综述了近几年钌亚乙烯基络合物中间体-碳的亲核反应。亲核试剂包括烯烃、炔烃、醇、酸、胺、水等。
2.In addition, high reactivity with various nucleophiles leads to high regioselective and trans-stereospecific ring-opening products.
另外,各类亲核试剂对环氧的开环得到了区域选择性和反式的立体选择性都较高的开环产物。
3.The nucleophiles include alkene, alkyne, alcohol, acid, amine, water, etc.
亲核试剂包括烯烃、炔烃、醇、酸、胺、水等。
4.Under the catalysis of Lewis bases, these allylic compounds readily undergo allylic alkylations with a series of nucleophiles;
在有机路易斯碱催化下,这类烯丙基衍生物容易与亲核试剂发生烯丙基烷基化反应;
5.What are the main nucleophiles in different cooking methods?
不同蒸煮方法里主要的亲核试剂是什么?
6.Reactions of Carbonyl Compounds with the Carbonyl Group as an Electrophile with H, C, N and O Nucleophiles.
作为亲电体的羰基与作为亲核体的H,C,N和O的羰基化合物反应。
7.Abstract : this article reviews recent progress in nucleophilic reactions of the - carbon in vinylidene ruthenium complexes. the nucleophiles include alkene, alkyne, alcohol, acid, amine, water, etc.
文摘:综述了近几年钌亚乙烯基络合物中间体-碳的亲核反应。亲核试剂包括烯烃、炔烃、醇、酸、胺、水等。
8.Common examples of nucleophiles include hydroxide ions and ammonia.
常见的亲核试剂包括氢氧根离子和氨。
9.In nucleophilic substitution reactions, nucleophiles replace leaving groups in organic compounds.
在亲核取代反应中,亲核试剂会取代有机化合物中的离去基团。
10.The strength of nucleophiles can vary depending on the solvent used in the reaction.
亲核试剂的强度可以根据反应中使用的溶剂而有所不同。
11.When a reaction involves nucleophiles, the rate can be significantly affected by their concentration.
当反应涉及到亲核试剂时,反应速率可能会受到它们浓度的显著影响。
12.In organic chemistry, nucleophiles are species that donate an electron pair to form a chemical bond.
在有机化学中,亲核试剂是指捐赠电子对以形成化学键的物质。
作文
In the realm of organic chemistry, understanding the behavior of different chemical species is crucial for predicting reaction outcomes. One such group of species that plays a vital role in many chemical reactions is known as nucleophiles. These are molecules or ions that are characterized by their ability to donate an electron pair to form a new bond with an electrophile, which is another species that accepts electrons. The term nucleophiles comes from the combination of 'nucleus' and 'lover', indicating their affinity for positively charged centers in other molecules.The significance of nucleophiles can be observed in various chemical reactions, particularly in substitution and addition reactions. For instance, in a typical nucleophilic substitution reaction, a nucleophile attacks the electrophilic carbon atom of a substrate, leading to the displacement of a leaving group. This type of reaction is fundamental in the synthesis of complex organic compounds. Common examples of nucleophiles include hydroxide ions (OH⁻), alkoxides (RO⁻), and amines (RNH₂), each possessing lone pairs of electrons that can be readily donated.Furthermore, the strength and reactivity of nucleophiles can vary significantly based on their structure and the surrounding environment. Factors such as electronegativity, steric hindrance, and solvent effects play critical roles in determining how effectively a nucleophile can engage in a reaction. For example, a strong nucleophile like sodium hydride (NaH) can react vigorously with electrophiles, while weaker nucleophiles may require more favorable conditions to participate in reactions.In addition to their role in organic synthesis, nucleophiles are also essential in biochemical processes. Enzymes often utilize nucleophiles to facilitate reactions within living organisms. For instance, in the process of DNA replication, specific nucleophiles attack the phosphate groups of nucleotides, allowing for the formation of new bonds and the elongation of the DNA strand. This illustrates the critical importance of nucleophiles not just in laboratory settings but also in biological systems.However, it is essential to note that the study of nucleophiles is not limited to their reactive properties. Understanding the mechanisms by which they operate allows chemists to design better catalysts and develop new synthetic pathways. This knowledge has profound implications in pharmaceuticals, materials science, and environmental chemistry, where controlling reaction conditions can lead to more efficient and sustainable practices.In conclusion, nucleophiles are integral components of chemical reactivity, influencing a wide range of reactions in both organic chemistry and biochemistry. Their ability to donate electron pairs makes them indispensable in forming new chemical bonds, thereby driving numerous processes essential for life and industry. As research continues to evolve, the understanding of nucleophiles will undoubtedly expand, paving the way for innovative applications and discoveries in the field of chemistry.
在有机化学领域,理解不同化学物质的行为对于预测反应结果至关重要。其中一类在许多化学反应中发挥重要作用的物质被称为亲核试剂。这些分子或离子以其能够捐赠电子对以形成与电亲核体的新键而著称。亲核试剂这个术语源于“核”和“爱好者”的组合,表明它们对其他分子中带正电中心的亲和力。亲核试剂的重要性可以在各种化学反应中观察到,尤其是在取代反应和加成反应中。例如,在典型的亲核取代反应中,亲核试剂攻击底物的电亲核碳原子,导致离去基团的位移。这种反应类型在复杂有机化合物的合成中是基础。常见的亲核试剂包括氢氧根离子(OH⁻)、醇氧根(RO⁻)和胺(RNH₂),它们各自拥有可以被轻易捐赠的孤对电子。此外,亲核试剂的强度和反应性可能会根据其结构和周围环境显著变化。电负性、空间位阻和溶剂效应等因素在决定亲核试剂参与反应的有效性方面发挥着关键作用。例如,像氢化钠(NaH)这样的强亲核试剂可以与电亲核体剧烈反应,而较弱的亲核试剂可能需要更有利的条件才能参与反应。除了在有机合成中的作用外,亲核试剂在生化过程中也至关重要。酶通常利用亲核试剂来促进生物体内的反应。例如,在DNA复制过程中,特定的亲核试剂攻击核苷酸的磷酸基团,从而允许形成新键并延长DNA链。这说明了亲核试剂在实验室环境和生物系统中的重要性。然而,值得注意的是,对亲核试剂的研究并不仅限于其反应特性。理解它们运作的机制使化学家能够设计更好的催化剂并开发新的合成途径。这一知识在制药、材料科学和环境化学中具有深远的影响,其中控制反应条件可以导致更高效和可持续的实践。总之,亲核试剂是化学反应的核心组成部分,影响着有机化学和生物化学中的广泛反应。它们捐赠电子对的能力使它们在形成新化学键中不可或缺,从而推动了生命和工业所需的众多过程。随着研究的不断发展,对亲核试剂的理解无疑将扩展,为化学领域的创新应用和发现铺平道路。