exons

简明释义

[ˈeksɒnz][ˈeksɑːnz]

n. [生化]外显子(基因中有编码蛋白质功能的部分, exon 的复数)

英英释义

Exons are the segments of a gene that are expressed in the final RNA product after the removal of introns during the process of RNA splicing.

外显子是基因中在RNA剪接过程中去除内含子后,最终RNA产物中被表达的片段。

单词用法

exon-intron structure

外显子-内含子结构

alternative splicing of exons

外显子的可选择性剪接

coding exons

编码外显子

non-coding exons

非编码外显子

同义词

coding sequences

编码序列

Exons are the coding sequences of a gene that are expressed in the final protein.

外显子是基因的编码序列,在最终蛋白中被表达。

gene segments

基因片段

Gene segments can be further classified into exons and introns.

基因片段可以进一步分类为外显子和内含子。

反义词

introns

内含子

Introns are non-coding sections of a gene that are removed during RNA splicing.

内含子是基因中不编码的部分,在RNA剪接过程中被去除。

例句

1.The alternatively spliced transcripts consist of 14, 15, or 16 exons, and all of them encode a putative protein of 1527 amino acids.

可变剪切的转录本包含有14、15或16个外显子,这些所有的转录本都编码一个具有1527个氨基酸的蛋白。

2.The AaSQS genomic DNA has a complex organization containing 14 exons and 13 introns.

青蒿鲨烯合酶基因组dna结构很复杂,包括14个外显子和13个内含子。

3.Given the occurrence of split genes, it might be re-defined as the set of DNA sequences (exons) that are required to produce a single polypeptide.

对分离的基因来说,它可被定义成一组需要用来产生蛋白质的脱氧核糖核酸序列,即外子。

4.Given the occurrence of split genes, it might be re - defined as the set of DNA sequences (exons) that are required to produce a single polypeptide.

对分离的基因来说,它可被定义成一组需要用来产生蛋白质的脱氧核糖核酸序列,即外子。

5.PCR and single strand conformation polymorphism analysis (SSCP) were combined with DNA sequencing confirmation to screen all 28 exons of SCN5A gene.

采用PCR单链构象多态性技术(SSCP)结合DNA序列测定证实,对病人SCN5A的全部2 8个外显子进行突变检测。

6.The analysis of amino acid sequence indicated that cattle RXRG gene consisted 10 exons and coded 463 amino acids.

通过氨基酸序列分析发现,牛rxrg基因的该片段由10个外显子组成,编码463个氨基酸。

7.Using MLPA analysis, we detected two large genomic rearrangements in three families, a deletion of exons 21 and 22, and a rare deletion of a whole BRCA1 gene.

使用多重连接依赖式探针扩增(MLPA),我们在三个家族中检测两个大的基因组重排,检测21和22外显子和整条BRCA1基因上的一个罕见缺失。

8.The exons 外显子 of a gene are often conserved across different species.

一个基因的外显子 exons 在不同物种之间通常是保守的。

9.The process of splicing removes introns and joins together the exons 外显子 to form a mature mRNA.

剪接过程去除了内含子并将外显子 exons 连接在一起形成成熟的mRNA。

10.Mutations in the exons 外显子 can lead to various genetic disorders.

外显子 exons 中的突变可能导致各种遗传疾病。

11.Researchers are studying how different exons 外显子 contribute to protein diversity.

研究人员正在研究不同的外显子 exons 如何影响蛋白质的多样性。

12.Bioinformatics tools can help identify the exons 外显子 within a DNA sequence.

生物信息学工具可以帮助识别DNA序列中的外显子 exons

作文

In the realm of molecular biology, understanding the structure and function of genes is fundamental. One of the key components of genes are exons, which are segments of DNA or RNA that contain coding information for protein synthesis. Unlike introns, which are non-coding regions that are removed during the process of RNA splicing, exons are the parts of the gene that remain in the final messenger RNA (mRNA) molecule. This distinction is crucial because it highlights the role of exons in the expression of genetic information.The process of gene expression begins with transcription, where a specific segment of DNA is copied into mRNA. During this process, both exons and introns are initially transcribed. However, before the mRNA can be translated into a protein, it undergoes splicing. This is where the exons are joined together, and the introns are removed. The final mRNA molecule consists solely of exons, ready to be translated into a functional protein.The significance of exons extends beyond just their role in coding for proteins. They also play a crucial part in the regulation of gene expression. Alternative splicing, a process where different combinations of exons are joined together, allows a single gene to produce multiple protein variants. This increases the diversity of proteins that can be synthesized from a limited number of genes, contributing to the complexity of biological systems.Moreover, mutations within exons can have profound effects on the resulting proteins. A single nucleotide change in an exon can lead to a missense mutation, where the amino acid sequence of a protein is altered, potentially affecting its function. In some cases, a mutation may create a premature stop codon, leading to truncated proteins that may not function properly. Thus, the integrity of exons is vital for maintaining the proper functioning of biological processes.Research into exons has also opened new avenues for understanding genetic diseases. Many hereditary conditions are linked to mutations in exons or the regulatory regions surrounding them. By studying these regions, scientists aim to uncover the genetic basis of diseases and develop targeted therapies. For example, advancements in gene editing technologies, such as CRISPR-Cas9, allow for precise modifications of exons, offering potential treatments for genetic disorders.In summary, exons are essential components of genes that play a pivotal role in coding for proteins and regulating gene expression. Their ability to be spliced in various combinations allows for a remarkable diversity of proteins, while their integrity is crucial for proper cellular function. As research continues to delve deeper into the world of exons, we gain invaluable insights into the complexities of genetics and the potential for innovative medical treatments. Understanding exons not only enhances our knowledge of molecular biology but also paves the way for advancements in genetic research and therapy.

在分子生物学领域,理解基因的结构和功能是基础。基因的一个关键组成部分是外显子,它们是含有蛋白质合成编码信息的DNA或RNA片段。与内含子不同,内含子是非编码区域,在RNA剪接过程中被去除,而外显子是最终信使RNA(mRNA)分子中保留的基因部分。这一区别至关重要,因为它突出了外显子在遗传信息表达中的作用。基因表达的过程始于转录,其中特定的DNA片段被复制成mRNA。在这个过程中,外显子和内含子最初都被转录。然而,在mRNA可以翻译成蛋白质之前,它需要经过剪接。在这一过程中,外显子被连接在一起,内含子被去除。最终的mRNA分子仅由外显子组成,准备好被翻译成功能性蛋白质。外显子的重要性不仅体现在它们在编码蛋白质中的作用上。它们在基因表达调控中也发挥着关键作用。替代剪接是一种将不同组合的外显子连接在一起的过程,允许单个基因产生多种蛋白质变体。这增加了从有限数量的基因合成的蛋白质的多样性,促进了生物系统的复杂性。此外,外显子中的突变可能对结果蛋白质产生深远的影响。外显子中的单核苷酸变化可能导致错义突变,即蛋白质的氨基酸序列发生改变,可能影响其功能。在某些情况下,突变可能会产生一个过早的终止密码子,导致截断蛋白质,这些蛋白质可能无法正常功能。因此,外显子的完整性对于维持生物过程的正常运作至关重要。对外显子的研究还开辟了理解遗传疾病的新途径。许多遗传性疾病与外显子或其周围调控区域的突变有关。通过研究这些区域,科学家旨在揭示疾病的遗传基础并开发靶向疗法。例如,基因编辑技术的进步,如CRISPR-Cas9,允许对外显子进行精确修改,为遗传疾病的潜在治疗提供了机会。总之,外显子是基因的基本组成部分,在编码蛋白质和调节基因表达中发挥着关键作用。它们以各种组合被剪接的能力使得蛋白质的多样性显著,而它们的完整性对于细胞功能的正常运作至关重要。随着研究不断深入外显子的世界,我们获得了对遗传学复杂性的宝贵洞察以及创新医学治疗的潜力。理解外显子不仅增强了我们对分子生物学的知识,也为遗传研究和治疗的进步铺平了道路。