ligand field absorption band

简明释义

配位场吸收带

英英释义

A ligand field absorption band refers to the specific range of wavelengths in the electromagnetic spectrum where a transition occurs due to the interaction between a metal ion and its surrounding ligands, resulting in electronic transitions within the d-orbitals of the metal.

配体场吸收带是指在电磁谱中,由于金属离子与其周围配体之间的相互作用而发生跃迁的特定波长范围,导致金属的d轨道内的电子跃迁。

例句

1.By analyzing the ligand field absorption band 配体场吸收带, we can infer the oxidation state of the metal ion in the complex.

通过分析配体场吸收带 配体场吸收带,我们可以推断出络合物中金属离子的氧化态。

2.Spectroscopic techniques are used to measure the ligand field absorption band 配体场吸收带 of various metal complexes.

光谱技术用于测量各种金属络合物的配体场吸收带 配体场吸收带

3.The intensity of the ligand field absorption band 配体场吸收带 can provide insights into the geometry of the complex.

配体场吸收带 配体场吸收带的强度可以提供有关络合物几何形状的见解。

4.The position of the ligand field absorption band 配体场吸收带 shifts with changes in ligand identity.

随着配体种类的变化,配体场吸收带 配体场吸收带的位置会发生变化。

5.The study of the ligand field absorption band 配体场吸收带 in transition metal complexes is crucial for understanding their electronic structure.

过渡金属络合物中对配体场吸收带 配体场吸收带的研究对于理解它们的电子结构至关重要。

作文

The study of transition metal complexes is a fascinating area in the field of coordination chemistry. One of the key concepts that helps us understand the electronic transitions within these complexes is the term ligand field absorption band. This concept refers to the specific wavelengths of light absorbed by a transition metal complex due to the interactions between the metal ion and the surrounding ligands. When light hits these complexes, electrons can be excited from lower energy d-orbitals to higher energy levels, resulting in an absorption spectrum that is characteristic of the particular metal-ligand interactions present. To comprehend the importance of the ligand field absorption band, we must first delve into the nature of ligands and their role in shaping the electronic environment of the metal center. Ligands are molecules or ions that donate electron pairs to the metal, forming coordinate covalent bonds. The type of ligand attached to the metal can significantly influence its electronic structure and, consequently, the energies of the d-orbitals. For example, strong field ligands such as CN⁻ will cause a larger splitting of the d-orbitals compared to weak field ligands like I⁻. This splitting is crucial because it determines the energy difference between the ground state and the excited state of the electrons, which in turn dictates the position of the ligand field absorption band in the spectrum.Moreover, the position of the ligand field absorption band can provide valuable insights into the geometry and oxidation state of the metal complex. By analyzing the absorption spectrum, chemists can determine whether the complex is octahedral, tetrahedral, or square planar, as different geometries lead to different patterns of d-orbital splitting. Additionally, variations in the position of the absorption band can indicate changes in the oxidation state of the metal, allowing for further characterization of the complex.In practical applications, the understanding of ligand field absorption bands is essential in fields such as catalysis, materials science, and even biological systems. For instance, many enzymes utilize metal ions in their active sites, and the electronic properties of these metal-ligand interactions can influence the enzyme's reactivity and selectivity. Furthermore, in the development of new materials, tuning the ligand field absorption band can help design compounds with specific optical properties, which can be utilized in sensors, photovoltaics, and other technologies.In conclusion, the concept of ligand field absorption band is fundamental to our understanding of transition metal complexes and their behavior in various chemical environments. By studying the absorption spectra, chemists gain insights into the electronic structure, geometry, and reactivity of these complexes. As research continues in this area, the implications of ligand field absorption bands will undoubtedly expand, leading to new discoveries and applications in chemistry and related fields.

过渡金属配合物的研究是配位化学领域中一个引人入胜的领域。帮助我们理解这些配合物内部电子跃迁的关键概念之一是术语配体场吸收带。这个概念指的是由于金属离子与周围配体之间的相互作用,过渡金属配合物所吸收的特定波长的光。当光照射到这些配合物时,电子可以从较低能量的d轨道激发到更高的能级,从而产生特征性的吸收光谱,这种光谱是特定金属-配体相互作用的特征。要理解配体场吸收带的重要性,我们首先必须深入探讨配体的性质及其在塑造金属中心电子环境中的作用。配体是向金属捐赠电子对的分子或离子,形成配位共价键。附着在金属上的配体类型可以显著影响其电子结构,因此也影响d轨道的能量。例如,强场配体如CN⁻会导致d轨道的分裂比弱场配体如I⁻大。这种分裂至关重要,因为它决定了基态和激发态之间的能量差,从而决定了光谱中配体场吸收带的位置。此外,配体场吸收带的位置可以提供有关金属配合物几何形状和氧化态的有价值线索。通过分析吸收光谱,化学家可以确定该配合物是八面体、四面体还是方平面,因为不同的几何形状导致不同的d轨道分裂模式。此外,吸收带位置的变化可以表明金属氧化态的变化,从而允许进一步表征配合物。在实际应用中,理解配体场吸收带在催化、材料科学甚至生物系统等领域至关重要。例如,许多酶在其活性位点利用金属离子,这些金属-配体相互作用的电子性质可以影响酶的反应性和选择性。此外,在新材料的开发中,调节配体场吸收带可以帮助设计具有特定光学性质的化合物,这些性质可以用于传感器、光伏和其他技术。总之,配体场吸收带的概念是我们理解过渡金属配合物及其在各种化学环境中行为的基础。通过研究吸收光谱,化学家获得了关于这些配合物的电子结构、几何形状和反应性的见解。随着这一领域研究的不断深入,配体场吸收带的意义无疑将扩展,推动化学及相关领域的新发现和应用。

相关单词

ligand

ligand详解:怎么读、什么意思、用法

absorption

absorption详解:怎么读、什么意思、用法