phonon
简明释义
n. [声] 声子
英英释义
A phonon is a quantized mode of vibration occurring in a rigid crystal lattice, representing the collective oscillations of atoms or molecules within the lattice. | 声子是发生在刚性晶格中的量子化振动模式,代表晶格中原子或分子的集体振荡。 |
单词用法
声子 | |
光学声子 | |
声子色散 | |
声子耦合 | |
声子能量 | |
声子模式 | |
声子相互作用 | |
声子传输 |
同义词
反义词
声子 | 在完美的真空中,没有声子存在。 | ||
真空 | Phonons are quantized modes of vibrations in solids, whereas a vacuum has no such modes. | 声子是固体中振动的量子化模式,而真空则没有这样的模式。 |
例句
1.A condensed soft optical phonon mode originates from the triply degenerate symmetric in-plane O-Nb-O bending.
一个软光学声子模来源于在铌-氧平面内的三重简并对称弯曲振动。
2.Thequasi equilibrium relaxation occurs via elastic and inelastic scattering and the emission of longitudinal optical phonon.
通过弹性和非弹性的碰撞,发射纵波光学声子,半导体中发生准。
3.Two simplified models, statistical model and electron-phonon coupling model, for the ideal metal electrical resistivity have been put forward.
提出了纯金属电阻率的两个简化模型:一个统计模型,一个电子一声子耦合模型。
4.Moreover, the photon echo signal gave the dephasing time due to the phonon interaction.
同时由光子回波信号测得由声子作用引起的波包退相特征时间。
5.The variation in heat conduction is analyzed using phonon heat conduction mechanism.
运用声子导热机制对导热变化机理进行了分析。
6.This corresponded to a phonon amplification effect. The mechanism of generating the phonon amplification was discussed.
详细讨论了产生这种声子增益效应的机理,给出了产生声子增益的时间间隔。
7.At low temperatures, the behavior of phonons 声子 becomes increasingly important for understanding superconductivity.
在低温下,phonons 声子 的行为对于理解超导性变得越来越重要。
8.In solid-state physics, a phonon 声子 is a quantized mode of vibration occurring in a rigid crystal lattice.
在固态物理学中,phonon 声子 是发生在刚性晶格中的量子化振动模式。
9.In quantum mechanics, phonons 声子 are treated as bosons and can occupy the same quantum state.
在量子力学中,phonons 声子 被视为玻色子,可以占据相同的量子态。
10.The interaction between electrons and phonons 声子 is crucial for explaining various electrical properties of materials.
电子与phonons 声子 之间的相互作用对于解释材料的各种电学性质至关重要。
11.The thermal conductivity of materials can be explained by the movement of phonons 声子 through the lattice.
材料的热导率可以通过phonons 声子 在晶格中的运动来解释。
作文
In the realm of condensed matter physics, the concept of a phonon plays a crucial role in understanding various physical phenomena. A phonon is essentially a quantized mode of vibration occurring in a rigid structure, such as a crystal lattice. This means that when atoms in a solid vibrate, they do so in quantized energy levels, and these vibrations can be treated as particles called phonons. Just like photons are the quantized units of light, phonons represent the quantized units of sound and vibrational energy in solids.The significance of phonons extends beyond mere theoretical interest; they have practical implications in many areas of technology and materials science. For instance, in the field of thermoelectrics, the efficiency of a material to convert heat into electricity is largely influenced by its phonon transport properties. Materials with low thermal conductivity, which often result from strong scattering of phonons, can enhance thermoelectric performance by maintaining a temperature gradient.Moreover, phonons are also integral to understanding superconductivity. In superconductors, the interaction between electrons and phonons can lead to the formation of Cooper pairs, which are responsible for the phenomenon of zero electrical resistance at low temperatures. This interplay highlights how phonons can mediate interactions that lead to macroscopic quantum effects.Another fascinating aspect of phonons is their role in determining the thermal properties of materials. The specific heat capacity of a solid, for example, is influenced by the density and behavior of phonons. As temperature increases, more phonons become excited, contributing to the overall energy of the system. This relationship is essential for understanding how materials respond to temperature changes and is critical for applications ranging from semiconductor devices to thermal insulation.Furthermore, the study of phonons has led to advances in nanotechnology. At the nanoscale, materials often exhibit unique properties due to the confinement of phonons. Researchers are exploring how manipulating phonon transport can lead to the development of new materials with tailored thermal and electronic properties. This could pave the way for innovations in energy storage, conversion, and even quantum computing.In conclusion, the concept of a phonon is fundamental to our understanding of solid-state physics and materials science. From influencing thermal and electrical properties to playing a key role in advanced technologies, phonons are an essential part of the physical landscape. As research continues to uncover the complexities of phonons and their interactions, we can expect to see further advancements that harness their unique characteristics for technological progress. The study of phonons not only deepens our comprehension of the microscopic world but also holds promise for future innovations that could transform various industries.
在凝聚态物理的领域中,“声子”的概念在理解各种物理现象中发挥着至关重要的作用。“声子”本质上是发生在刚性结构中的量子化振动模式,例如晶格。这意味着当固体中的原子振动时,它们以量子化的能级振动,这些振动可以被视为称为“声子”的粒子。就像光子的量子单位代表光一样,“声子”则代表固体中声波和振动能量的量子单位。“声子”的重要性不仅仅限于理论兴趣;它们在许多技术和材料科学领域具有实际意义。例如,在热电领域,材料将热能转化为电能的效率在很大程度上受到其“声子”传输特性的影响。低热导率的材料,通常由于“声子”的强散射,可以通过维持温度梯度来增强热电性能。此外,“声子”在理解超导性方面也至关重要。在超导体中,电子与“声子”之间的相互作用可以导致库珀对的形成,库珀对是零电阻现象的原因。这种相互作用突显了“声子”如何介导导致宏观量子效应的相互作用。“声子”的另一个迷人方面是它们在决定材料热特性中的作用。例如,固体的比热容受到“声子”的密度和行为的影响。随着温度的升高,更多的“声子”被激发,贡献到系统的整体能量中。这种关系对于理解材料如何响应温度变化至关重要,并且对于从半导体设备到热绝缘的应用都是关键。此外,“声子”的研究推动了纳米技术的发展。在纳米尺度上,由于“声子”的限制,材料往往表现出独特的性质。研究人员正在探索如何操控“声子”传输,以开发具有定制热和电子特性的材料。这可能为能源存储、转换甚至量子计算领域的创新铺平道路。总之,“声子”的概念是我们理解固态物理和材料科学的基础。从影响热和电特性到在先进技术中发挥关键作用,“声子”是物理景观的重要组成部分。随着研究不断揭示“声子”及其相互作用的复杂性,我们可以期待看到进一步的进展,利用它们独特的特性推动技术进步。“声子”的研究不仅加深了我们对微观世界的理解,还为未来的创新提供了希望,这些创新可能会改变各个行业。