transition temperature
简明释义
转变温度
英英释义
例句
1.In polymers, the transition temperature 转变温度 indicates the point where the material changes from a brittle to a ductile state.
在聚合物中,转变温度 transition temperature 表示材料从脆性状态转变为延展性状态的点。
2.The transition temperature 转变温度 of the material is crucial for determining its usability in high-temperature applications.
该材料的转变温度 transition temperature 对于确定其在高温应用中的可用性至关重要。
3.Understanding the transition temperature 转变温度 helps engineers design better thermal management systems.
理解转变温度 transition temperature 有助于工程师设计更好的热管理系统。
4.Researchers found that the transition temperature 转变温度 significantly affects the superconducting properties of the alloy.
研究人员发现,转变温度 transition temperature 显著影响合金的超导特性。
5.The transition temperature 转变温度 for this specific ceramic is around 1200 degrees Celsius.
这种特定陶瓷的转变温度 transition temperature 大约在1200摄氏度左右。
作文
The concept of transition temperature is crucial in various fields of science and engineering, particularly in material science and thermodynamics. In simple terms, the transition temperature refers to the specific temperature at which a material changes its state or properties. This transformation can occur in several ways, such as from solid to liquid, liquid to gas, or even from one crystalline structure to another. Understanding the transition temperature of materials is essential for predicting their behavior under different environmental conditions.For instance, consider water, which has a well-known transition temperature of 0 degrees Celsius. At this temperature, ice (solid) melts into water (liquid), and vice versa. This phenomenon is not only critical for understanding basic physical processes but also has far-reaching implications in climate science, where the melting of polar ice caps can significantly affect global sea levels. In the realm of materials engineering, knowing the transition temperature of metals and polymers is vital for applications like manufacturing and construction. For example, steel has a transition temperature that determines its ductility and toughness. If steel is used in structural applications, engineers must ensure that it remains above its transition temperature to avoid brittleness and potential failure under stress. Similarly, polymers have glass transition temperatures that indicate the temperature range where they transition from a brittle, glassy state to a more flexible, rubbery state. This property is crucial for determining the suitability of a polymer for specific applications, such as packaging materials or automotive components.Moreover, the transition temperature is also significant in the field of superconductivity. Superconductors are materials that exhibit zero electrical resistance below a certain transition temperature. The discovery of new superconducting materials with higher transition temperatures has opened up exciting possibilities for advancements in technology, including magnetic levitation and lossless power transmission. Researchers are continually exploring the mechanisms behind these transition temperatures to develop better materials that can operate efficiently at higher temperatures.In conclusion, the transition temperature plays a pivotal role in understanding the behavior of materials in various states and conditions. Whether it is in the context of environmental science, engineering, or advanced technology, grasping the implications of transition temperature allows scientists and engineers to make informed decisions about material selection and application. As we continue to advance our knowledge in these fields, the importance of accurately determining and utilizing the transition temperature will only grow, driving innovation and improving safety in countless applications.
“转变温度”的概念在科学和工程的各个领域中至关重要,特别是在材料科学和热力学中。简单来说,“转变温度”指的是材料改变其状态或性质的特定温度。这种转变可以以多种方式发生,例如从固态转变为液态,从液态转变为气态,甚至从一种晶体结构转变为另一种。理解材料的“转变温度”对于预测其在不同环境条件下的行为至关重要。例如,考虑水,它有一个众所周知的“转变温度”,即0摄氏度。在这个温度下,冰(固态)融化成水(液态),反之亦然。这一现象不仅对理解基本的物理过程至关重要,而且在气候科学中具有深远的影响,因为极地冰盖的融化可能会显著影响全球海平面。在材料工程领域,了解金属和聚合物的“转变温度”对于制造和建筑等应用至关重要。例如,钢材的“转变温度”决定了其延展性和韧性。如果钢材用于结构应用,工程师必须确保它保持在其“转变温度”之上,以避免在应力下变脆和潜在的失效。同样,聚合物具有玻璃转变温度,指示它们从脆性、玻璃状状态转变为更灵活、橡胶状状态的温度范围。这一特性对于确定聚合物在特定应用中的适用性至关重要,例如包装材料或汽车部件。此外,“转变温度”在超导性领域也很重要。超导体是指在某一特定“转变温度”以下表现出零电阻的材料。发现具有更高“转变温度”的新型超导材料为技术进步开辟了激动人心的可能性,包括磁悬浮和无损电力传输。研究人员不断探索这些“转变温度”背后的机制,以开发能够在更高温度下高效运行的更好材料。总之,“转变温度”在理解材料在各种状态和条件下的行为中发挥着关键作用。无论是在环境科学、工程还是先进技术的背景下,掌握“转变温度”的含义使科学家和工程师能够就材料选择和应用做出明智的决策。随着我们在这些领域知识的不断推进,准确确定和利用“转变温度”的重要性只会增加,推动创新并改善无数应用中的安全性。
相关单词