neutrinos
简明释义
英[njuːˈtraɪnoʊs]美[njuːˈtraɪnoʊs]
n. 中微子(neutrino 的复数)
英英释义
Neutrinos are subatomic particles that are electrically neutral and have a very small mass, which allows them to pass through matter almost undetected. | 中微子是电中性的亚原子粒子,质量非常小,使得它们几乎不被物质探测到地穿过物质。 |
单词用法
同义词
反义词
带电粒子 | Charged particles, such as electrons and protons, interact with electromagnetic forces. | 带电粒子,如电子和质子,与电磁力相互作用。 | |
物质 | Matter is composed of atoms, which contain charged particles. | 物质由原子组成,原子中包含带电粒子。 |
例句
1.This works because neutrinos shoot straight through such shields.
这种安排是可行的,因为中微子束可以直接穿过这些盾牌。
2.What's cool about neutrinos?
中微子有什么了不起的?
3.Even a tiny mass means that neutrinos would outweigh all the universe's visible matter, because of their vast numbers.
因为数量巨大,即使是很小的质量也意味着中微子会超过宇宙中所有可见的物质。
4.Neutrinos, it must be confessed, are neglected for a reason.
必须承认,中微子遭到忽视是有原因的。
5.Further experiments to confirm that neutrinos have mass could help physicists determine which, if any, of these theories is correct.
进一步证实中微子有质量的实验可以帮助物理学家确定这些理论中哪一个(如果有的话)是正确的。
6.Yes, you heard me: neutrinos.
是的,你没有听错,是中微子。
7.As stars explode in a supernova, most of their energy streams out as neutrinos.
当恒星在超新星中爆炸时,它们能量流中的大部分以中微子的形式跑了出来。
8.Scientists are studying the behavior of neutrinos 中微子 to understand more about the universe.
科学家正在研究中微子的行为,以更好地理解宇宙。
9.The neutrinos 中微子 produced in nuclear reactions can be detected by specialized instruments.
核反应中产生的中微子可以通过专门的仪器检测到。
10.Researchers are using neutrinos 中微子 to explore the core of the Earth.
研究人员正在利用中微子探索地球的核心。
11.Astrophysicists believe that neutrinos 中微子 could provide clues about dark matter.
天体物理学家认为中微子可能提供关于暗物质的线索。
12.The detection of neutrinos 中微子 from the sun helps us learn about solar processes.
从太阳探测到的中微子帮助我们了解太阳的过程。
作文
Neutrinos are one of the most fascinating particles in the universe. They are subatomic particles that have a very small mass and no electric charge, making them extremely difficult to detect. In fact, trillions of these particles pass through our bodies every second without us even noticing. The study of neutrinos (中微子) has opened up new frontiers in the field of particle physics and has provided us with insights into some of the most fundamental questions about the universe. One of the key features of neutrinos (中微子) is their ability to oscillate between different types, or 'flavors'. There are three known flavors of neutrinos (中微子): electron, muon, and tau. This phenomenon, known as neutrino oscillation, indicates that neutrinos (中微子) have mass, which was a surprising discovery given that they were initially thought to be massless. This finding has significant implications for our understanding of the Standard Model of particle physics and raises questions about the nature of mass itself. The origins of neutrinos (中微子) can be traced back to several sources, including the sun, cosmic rays, and nuclear reactions on Earth. The sun produces an enormous number of neutrinos (中微子) through the process of nuclear fusion, which powers its core. These solar neutrinos (中微子) are a vital tool for astrophysicists who study the processes occurring within the sun. By detecting and analyzing these particles, scientists can gain insights into the sun's internal structure and energy production mechanisms. Another exciting aspect of neutrinos (中微子) is their role in supernova explosions. When a massive star reaches the end of its life, it undergoes a catastrophic collapse, leading to a supernova. During this event, a tremendous amount of neutrinos (中微子) are produced, carrying away energy and information about the explosion. Observing these neutrinos (中微子) can provide valuable data about the dynamics of supernovae and the processes that govern stellar evolution. Despite their elusive nature, scientists have developed sophisticated detectors to capture neutrinos (中微子). One notable example is the Super-Kamiokande detector in Japan, which uses a large volume of water to observe the faint flashes of light produced when neutrinos (中微子) interact with water molecules. These detectors have led to groundbreaking discoveries, including the confirmation of neutrino (中微子) oscillation and the measurement of their masses. In conclusion, neutrinos (中微子) are remarkable particles that challenge our understanding of the universe. Their unique properties and interactions make them a key focus of research in modern physics. As we continue to study neutrinos (中微子), we may unlock new secrets about the fundamental forces of nature, the evolution of stars, and the very fabric of the cosmos. The journey of understanding neutrinos (中微子) is just beginning, and it promises to be an exciting adventure for scientists and enthusiasts alike.
中微子是宇宙中最迷人的粒子之一。它们是亚原子粒子,质量非常小且没有电荷,使其极难探测。事实上,数万亿个这样的粒子每秒穿过我们的身体而我们却毫无察觉。对中微子的研究为粒子物理学领域开辟了新的前沿,并为我们提供了关于宇宙一些基本问题的见解。中微子的一个关键特征是它们能够在不同类型或“味道”之间振荡。目前已知的中微子有三种味道:电子、中微子和塔中微子。这种现象被称为中微子振荡,表明中微子具有质量,这一发现令人惊讶,因为它们最初被认为是无质量的。这一发现对我们对粒子物理学标准模型的理解具有重要意义,并引发了关于质量本质的问题。中微子的起源可以追溯到几个来源,包括太阳、宇宙射线和地球上的核反应。太阳通过核聚变过程产生大量的中微子,这为其核心提供能量。这些太阳中微子是天体物理学家研究太阳内部过程的重要工具。通过探测和分析这些粒子,科学家可以获得关于太阳内部结构和能量生产机制的见解。中微子的另一个令人兴奋的方面是它们在超新星爆炸中的作用。当一颗大质量恒星达到其生命的尽头时,它会经历灾难性的崩溃,导致超新星的发生。在这一事件中,会产生大量的中微子,携带能量和关于爆炸的信息。观察这些中微子可以提供关于超新星动力学和恒星演化过程的宝贵数据。尽管中微子的本质难以捉摸,科学家们已经开发出复杂的探测器来捕获它们。其中一个著名的例子是日本的超级神冈探测器,它使用大量水来观察当中微子与水分子相互作用时产生的微弱光闪烁。这些探测器导致了突破性的发现,包括确认中微子振荡和测量它们的质量。总之,中微子是挑战我们对宇宙理解的非凡粒子。它们独特的性质和相互作用使其成为现代物理学研究的关键焦点。随着我们继续研究中微子,我们可能会揭示关于自然基本力、恒星演化和宇宙结构的新的秘密。理解中微子的旅程才刚刚开始,这对科学家和爱好者来说都是一场激动人心的冒险。