distribution function

简明释义

配分函数

英英释义

A distribution function is a mathematical function that describes the probability of a random variable taking on a value less than or equal to a certain level.

分布函数是一个数学函数,用于描述随机变量取值小于或等于某一特定水平的概率。

例句

1.In statistics, the cumulative distribution function (CDF) is used to describe the probability that a variable takes on a value less than or equal to a specific value.

在统计学中,累积分布函数(distribution function)用于描述一个变量取值小于或等于特定值的概率。

2.The distribution function of a random variable helps us understand the probabilities associated with different outcomes.

随机变量的分布函数帮助我们理解与不同结果相关的概率。

3.Understanding the distribution function is crucial for making informed decisions based on statistical data.

理解分布函数对于基于统计数据做出明智决策至关重要。

4.The probability density function is related to the cumulative distribution function by differentiation.

概率密度函数与累积分布函数通过微分关系相连。

5.To analyze the data, we plotted the distribution function to visualize how values are distributed across the range.

为了分析数据,我们绘制了分布函数以可视化值在范围内的分布情况。

作文

In the field of statistics and probability theory, the concept of a distribution function plays a crucial role in understanding how random variables behave. A distribution function is essentially a mathematical function that describes the probability distribution of a random variable. It provides a comprehensive overview of the likelihood of different outcomes and is fundamental in various applications, from economics to engineering. To delve deeper into what a distribution function entails, we can consider two primary types: the cumulative distribution function (CDF) and the probability density function (PDF). The CDF gives us the probability that a random variable takes on a value less than or equal to a certain threshold. This allows researchers and analysts to easily determine the likelihood of specific outcomes occurring in a given scenario. For instance, if we are analyzing the heights of individuals in a population, the CDF can help us ascertain the probability that a randomly selected person will be shorter than a particular height.On the other hand, the PDF is used for continuous random variables and represents the density of probabilities across different values. Unlike the CDF, which gives probabilities directly, the PDF must be integrated over an interval to yield probabilities. Understanding the PDF is essential when dealing with continuous data, such as measuring the time it takes for a computer to complete a task or the amount of rainfall in a region over a specific period.The importance of the distribution function extends beyond theoretical applications; it is also vital in practical scenarios. For example, in quality control processes, manufacturers use distribution functions to monitor product specifications and ensure they meet industry standards. By analyzing the distribution of measurements, they can identify defects and make necessary adjustments to maintain quality.Moreover, in finance, the distribution function helps investors assess risk and return associated with different investment options. By understanding the probability distribution of asset returns, investors can make informed decisions about where to allocate their resources.In summary, the distribution function serves as a foundational concept in statistics and probability, providing insights into the behavior of random variables. Its applications are vast and varied, impacting numerous fields and industries. By mastering the principles surrounding distribution functions, one can enhance their analytical skills and improve decision-making processes in both academic and professional contexts. Understanding how to interpret and apply these functions is not just beneficial; it is essential for anyone working with data and statistics today.

在统计学和概率论领域,分布函数的概念在理解随机变量的行为中发挥着至关重要的作用。分布函数本质上是一个数学函数,用于描述随机变量的概率分布。它提供了不同结果发生可能性的全面概述,并且在经济学到工程学的各种应用中都是基础。为了更深入地了解分布函数的含义,我们可以考虑两种主要类型:累积分布函数(CDF)和概率密度函数(PDF)。CDF给我们提供了随机变量取值小于或等于某一阈值的概率。这使得研究人员和分析师能够轻松确定特定结果发生的可能性。例如,如果我们在分析一个人群的身高,CDF可以帮助我们确定随机选择的人比某一特定身高矮的概率。另一方面,PDF用于连续随机变量,表示不同值的概率密度。与直接给出概率的CDF不同,PDF必须在区间内进行积分以产生概率。在处理连续数据时,理解PDF至关重要,例如测量计算机完成任务所需的时间或特定时间段内某地区的降雨量。分布函数的重要性不仅限于理论应用;它在实际场景中也至关重要。例如,在质量控制过程中,制造商使用分布函数来监控产品规格,以确保其符合行业标准。通过分析测量的分布,他们可以识别缺陷并做出必要的调整以保持质量。此外,在金融领域,分布函数帮助投资者评估与不同投资选项相关的风险和回报。通过理解资产收益的概率分布,投资者可以对资源的配置做出明智的决定。总之,分布函数作为统计学和概率论中的基础概念,为随机变量的行为提供了洞察。它的应用广泛而多样,影响着许多领域和行业。通过掌握与分布函数相关的原理,人们可以提升分析技能,并改善学术和职业背景下的决策过程。理解如何解读和应用这些函数不仅有益;对于今天从事数据和统计工作的人来说,它是必不可少的。

相关单词

distribution

distribution详解:怎么读、什么意思、用法