crystal chemistry

简明释义

晶体化学

英英释义

Crystal chemistry is the branch of chemistry that deals with the study of the arrangement of atoms within crystalline solids and the relationships between their structures and properties.

晶体化学是化学的一个分支,研究晶体固体中原子的排列及其结构与性质之间的关系。

例句

1.Understanding crystal chemistry 晶体化学 is essential for developing new materials with specific properties.

理解晶体化学对于开发具有特定性质的新材料至关重要。

2.In crystal chemistry 晶体化学, the symmetry of a crystal structure can influence its physical properties.

晶体化学中,晶体结构的对称性可以影响其物理特性。

3.Researchers in crystal chemistry 晶体化学 often use X-ray diffraction to analyze crystal structures.

从事晶体化学的研究人员通常使用X射线衍射来分析晶体结构。

4.The study of crystal chemistry 晶体化学 helps us understand the arrangement of atoms in solid materials.

晶体化学的研究有助于我们理解固体材料中原子的排列。

5.The principles of crystal chemistry 晶体化学 can be applied in fields such as mineralogy and materials science.

在矿物学和材料科学等领域可以应用晶体化学的原理。

作文

Crystal chemistry is a fascinating field of study that explores the arrangement of atoms within crystalline solids. This discipline combines principles from both chemistry and crystallography, allowing scientists to understand how the internal structure of a crystal influences its physical and chemical properties. The term crystal chemistry (晶体化学) encompasses various aspects, including the types of bonds that hold the crystal together, the symmetry of the crystal lattice, and the interactions between different ions or molecules within the crystal. One of the most intriguing aspects of crystal chemistry (晶体化学) is its ability to explain why certain materials exhibit unique properties. For example, the way atoms are arranged in a crystal can determine whether a material is a good conductor of electricity, a strong insulator, or even a superconductor. This understanding is crucial for developing new materials with desired characteristics, which can have applications in electronics, medicine, and energy storage. In addition to practical applications, crystal chemistry (晶体化学) also plays a significant role in the natural sciences. Many minerals found in nature are crystalline in structure. By studying these crystals, geologists and mineralogists can gain insights into the conditions under which they formed, including temperature, pressure, and the chemical environment. Furthermore, the study of crystal structures has led to breakthroughs in fields such as pharmacology, where understanding the structure of drug molecules can lead to more effective medications. The techniques used in crystal chemistry (晶体化学) have advanced significantly over the years. X-ray diffraction, for instance, is a powerful method that allows scientists to determine the precise arrangement of atoms in a crystal. This technique involves directing X-rays at a crystal and analyzing the resulting diffraction pattern to deduce the positions of the atoms. Other methods, such as electron microscopy and nuclear magnetic resonance (NMR), also contribute valuable information about crystal structures. Moreover, the study of crystal chemistry (晶体化学) is not limited to inorganic compounds; it also extends to organic crystals. Organic compounds can form intricate crystal structures that exhibit interesting properties, such as polymorphism, where a substance can exist in multiple crystal forms. Understanding these variations is essential for industries like pharmaceuticals, where the efficacy of a drug can be influenced by its crystalline form. As we continue to explore the world of crystal chemistry (晶体化学), we uncover new materials and phenomena that challenge our existing knowledge. The integration of computational methods with experimental techniques is paving the way for predicting crystal structures before they are synthesized in the lab. This predictive capability opens up exciting possibilities for designing novel materials tailored for specific applications. In conclusion, crystal chemistry (晶体化学) is a dynamic and interdisciplinary field that bridges the gap between chemistry, physics, and materials science. Its implications are vast, impacting everything from the development of new technologies to our understanding of natural processes. As research in this area continues to evolve, we can anticipate even more groundbreaking discoveries that will shape the future of science and technology.

晶体化学是一个迷人的研究领域,探索晶体固体中原子的排列。这个学科结合了化学和晶体学的原则,使科学家能够理解晶体的内部结构如何影响其物理和化学性质。术语晶体化学crystal chemistry)涵盖了多个方面,包括保持晶体在一起的键的类型、晶体晶格的对称性以及晶体内不同离子或分子之间的相互作用。晶体化学crystal chemistry)的一个最引人入胜的方面是它能够解释为什么某些材料表现出独特的属性。例如,原子在晶体中的排列方式可以决定材料是否是良好的电导体、强绝缘体,甚至是超导体。这种理解对于开发具有所需特性的新品质材料至关重要,这些材料可以应用于电子、医学和能源存储等领域。除了实际应用之外,晶体化学crystal chemistry)在自然科学中也发挥着重要作用。许多自然界中发现的矿物具有晶体结构。通过研究这些晶体,地质学家和矿物学家可以深入了解它们形成的条件,包括温度、压力和化学环境。此外,晶体结构的研究在药理学等领域取得了突破,理解药物分子的结构可以导致更有效的药物。随着时间的推移,晶体化学crystal chemistry)中使用的技术得到了显著发展。例如,X射线衍射是一种强大的方法,允许科学家确定晶体中原子的精确排列。这种技术涉及将X射线照射到晶体上,并分析产生的衍射图案以推断原子的位置。其他方法,如电子显微镜和核磁共振(NMR),也为晶体结构提供了宝贵的信息。此外,晶体化学crystal chemistry)的研究不仅限于无机化合物;它还扩展到有机晶体。有机化合物可以形成复杂的晶体结构,表现出有趣的性质,例如多晶型,其中一种物质可以存在于多种晶体形式中。理解这些变化对于制药等行业至关重要,因为药物的效能可能受到其晶体形式的影响。随着我们继续探索晶体化学crystal chemistry)的世界,我们揭示出新的材料和现象,这些现象挑战着我们现有的知识。计算方法与实验技术的结合正在为预测晶体结构铺平道路,这些结构在实验室合成之前就能被预测。这种预测能力为设计针对特定应用的新型材料开辟了令人兴奋的可能性。总之,晶体化学crystal chemistry)是一个动态且跨学科的领域,架起了化学、物理和材料科学之间的桥梁。它的影响范围广泛,影响从新技术的发展到我们对自然过程的理解。随着这一领域研究的不断发展,我们可以期待更多开创性的发现,这些发现将塑造科学和技术的未来。

相关单词

crystal

crystal详解:怎么读、什么意思、用法

chemistry

chemistry详解:怎么读、什么意思、用法