integers
简明释义
n. [数]整数(integer 的复数)
英英释义
Integers are whole numbers that can be positive, negative, or zero, and do not include fractions or decimals. | 整数是可以是正数、负数或零的完整数字,不包括分数或小数。 |
单词用法
[计]整数规划 | |
正整数 |
同义词
整数 | 整数用于计数和排序。 | ||
自然数 | 自然数不包括负数和零。 | ||
有符号数 | 有符号数可以是正整数或负整数。 |
反义词
分数 | 分数可以表示整体的一部分。 | ||
小数 | 小数常用于财务计算。 |
例句
1.The filter expression will result in a sequence of integers where each is less than 1,000 and divisible by 3 or 5.
该筛选表达式将产生一个整数序列,其中每个整数都小于1000且能被3或5整除。
2.Most numerical data can't be represented as integers.
多数数值型数据不能用整数表示。
3.Of course, you can read and write more than just integers.
当然,您可以读取和写入整数之外的值。
4.The provided implementation uses integers internally.
这里提供的实现在内部是使用整数的。
5.Sometimes the way integers are handled creates a vulnerability.
有时处理整数的方式会导致程序缺陷。
6.Prime integers can be efficiently found using a primality test.
使用素数测试可以有效地找到素数整数。
7.Each username translates to one of these assigned integers.
每个用户名都转换为这些分配的整数之一。
8.As long as these are integers, that's perfectly fine.
只要是整数,就很好了。
9.It adds the integers in order, so the list is already sorted at the end.
它将按顺序添加整数,因此在结束时已经给列表排好序。
10.When counting items, we only use integers 整数 since fractions don't apply.
在计数物品时,我们只使用 整数,因为分数不适用。
11.The set of integers 整数 includes positive numbers, negative numbers, and zero.
整数 的集合包括正数、负数和零。
12.A common exercise in programming is to sort a list of integers 整数.
编程中的一个常见练习是对一组 整数 进行排序。
13.In mathematics, we often work with integers 整数 to solve equations.
在数学中,我们经常使用 整数 来解方程。
14.The result of adding two integers 整数 is always another integer 整数.
两个 整数 相加的结果总是另一个 整数。
作文
In the realm of mathematics, the concept of integers (整数) plays a crucial role in various fields, from basic arithmetic to advanced algebra. An integer (整数) is defined as any whole number, whether positive, negative, or zero. This broad category includes numbers like -3, 0, and 7, showcasing the diversity and utility of integers (整数) in mathematical operations. Understanding integers (整数) is fundamental for anyone seeking to grasp the foundations of mathematics. For instance, when we add, subtract, multiply, or divide integers (整数), we are engaging with some of the most basic yet powerful tools in mathematics. The rules governing these operations are straightforward, making integers (整数) accessible to learners at all levels. Consider addition, where the sum of two integers (整数) is another integer (整数). For example, adding 5 and -2 results in 3, a clear illustration of how integers (整数) can interact. Similarly, the subtraction of integers (整数) follows the same principles; subtracting 4 from 10 gives us 6. These operations establish a foundation for more complex mathematical concepts, such as algebraic equations and functions. Multiplication and division also demonstrate the properties of integers (整数). When we multiply two integers (整数), the result can be positive or negative, depending on the signs of the numbers involved. For instance, multiplying 3 by -4 yields -12, while multiplying -3 by -4 results in 12. This aspect of integers (整数) highlights the importance of understanding positive and negative values in mathematics. Moreover, the concept of integers (整数) extends beyond simple calculations; it is essential in various real-world applications. For instance, in computer science, integers (整数) are used in programming languages to represent data types, manage memory, and perform calculations. In statistics, integers (整数) can represent counts or rankings, providing a way to analyze and interpret data effectively. Additionally, the study of integers (整数) leads to the exploration of number theory, a fascinating branch of mathematics that examines the properties and relationships of integers (整数). Concepts such as prime numbers, divisibility, and the greatest common divisor (GCD) are all rooted in the study of integers (整数). For example, identifying prime integers (整数) is crucial for cryptography, ensuring secure communication in the digital age. In conclusion, integers (整数) are more than just numbers; they are the building blocks of mathematics that facilitate a deeper understanding of numerical relationships and operations. From basic arithmetic to advanced theories, integers (整数) provide a framework for exploring the vast landscape of mathematics. By mastering integers (整数), students and enthusiasts alike can unlock the door to a world of mathematical possibilities, paving the way for future learning and discovery.
在数学领域,整数(integers)的概念在各个领域中起着至关重要的作用,从基本算术到高级代数。整数(integers)被定义为任何整数,无论是正数、负数还是零。这个广泛的类别包括数字如-3、0和7,展示了整数(integers)在数学运算中的多样性和实用性。理解整数(integers)对任何想要掌握数学基础的人来说都是至关重要的。例如,当我们加、减、乘或除整数(integers)时,我们正在运用一些最基本但又强大的数学工具。关于这些运算的规则非常简单,使得整数(integers)对各个层次的学习者都易于接触。考虑加法,两个整数(integers)的和也是一个整数(integers)。例如,将5和-2相加的结果是3,这清楚地说明了整数(integers)如何相互作用。同样,整数(integers)的减法遵循相同的原则;从10中减去4得到6。这些运算为更复杂的数学概念,如代数方程和函数奠定了基础。乘法和除法也展示了整数(integers)的性质。当我们将两个整数(integers)相乘时,结果可以是正数或负数,这取决于相关数字的符号。例如,3乘以-4的结果是-12,而-3乘以-4的结果是12。这一方面强调了理解数学中正负值的重要性。此外,整数(integers)的概念不仅限于简单的计算;它在各种现实应用中也至关重要。例如,在计算机科学中,整数(integers)用于编程语言中表示数据类型、管理内存和执行计算。在统计学中,整数(integers)可以表示计数或排名,为有效分析和解释数据提供了一种方式。此外,整数(integers)的研究引导我们探索数论,这是数学的一个迷人分支,研究整数(integers)的性质和关系。素数、可分性和最大公约数(GCD)等概念都根植于整数(integers)的研究之中。例如,识别素数整数(integers)对密码学至关重要,确保数字时代的安全通信。总之,整数(integers)不仅仅是数字;它们是数学的基石,促进了对数值关系和运算的更深理解。从基本算术到高级理论,整数(integers)为探索数学的广阔领域提供了框架。通过掌握整数(integers),学生和爱好者可以打开通往数学可能性世界的大门,为未来的学习和发现铺平道路。