atomic orbital

简明释义

原子轨道

英英释义

An atomic orbital is a mathematical function that describes the wave-like behavior of an electron in an atom, representing regions in space where there is a high probability of finding an electron.

原子轨道是一个数学函数,描述了电子在原子中的波动行为,表示在空间中找到电子的高概率区域。

例句

1.Different types of atomic orbitals 原子轨道 include s, p, d, and f orbitals.

不同类型的原子轨道包括s、p、d和f轨道。

2.The atomic orbital 原子轨道 model helps explain the distribution of electrons in an atom.

原子轨道模型有助于解释原子中电子的分布。

3.The shape of an atomic orbital 原子轨道 can influence the chemical properties of an element.

一个原子轨道的形状可以影响元素的化学性质。

4.In quantum chemistry, we often calculate the energies of various atomic orbitals 原子轨道 to predict molecular behavior.

在量子化学中,我们常常计算各种原子轨道的能量以预测分子行为。

5.Electrons occupy the lowest energy atomic orbital 原子轨道 available in an atom.

电子占据原子中可用的最低能量原子轨道

作文

The concept of atomic orbital is fundamental to understanding the structure of atoms and the behavior of electrons. An atomic orbital can be defined as a region in an atom where there is a high probability of finding an electron. Unlike the classical view of electrons orbiting the nucleus in fixed paths, the quantum mechanical model introduces the idea that electrons exist in specific regions around the nucleus, known as atomic orbitals. Each atomic orbital has a distinct shape and energy level, which are determined by the quantum numbers associated with the electron. There are several types of atomic orbitals, including s, p, d, and f orbitals. The s orbitals are spherical in shape and can hold a maximum of two electrons. The p orbitals have a dumbbell shape and can accommodate up to six electrons. The d and f orbitals are more complex in shape and can hold ten and fourteen electrons, respectively. Understanding these shapes is crucial because they influence how atoms interact with one another, forming chemical bonds. The arrangement of atomic orbitals in an atom is described by the electron configuration, which follows the principles of the Aufbau principle, Pauli exclusion principle, and Hund's rule. These principles dictate how electrons fill the atomic orbitals, starting from the lowest energy levels to the higher ones. For example, in a carbon atom, the electron configuration is 1s² 2s² 2p², indicating that the first two electrons occupy the 1s atomic orbital, the next two occupy the 2s atomic orbital, and the last two fill the 2p atomic orbitals. The significance of atomic orbitals extends beyond just the arrangement of electrons. They play a critical role in determining the chemical properties of elements. The type and number of electrons in the outermost atomic orbitals dictate how an element will react with others. For instance, elements with a full outer shell of atomic orbitals are generally inert and do not readily participate in chemical reactions, while those with incomplete shells are more reactive. In addition, the concept of atomic orbitals is essential for understanding molecular geometry and bonding. When atoms combine to form molecules, their atomic orbitals overlap to create molecular orbitals. This overlapping can lead to the formation of single, double, or triple bonds, depending on how many atomic orbitals are involved. The shapes of these molecular orbitals are influenced by the original atomic orbitals from which they are formed, further emphasizing the importance of understanding atomic orbitals in chemistry. In conclusion, the study of atomic orbitals is crucial for grasping the complexities of atomic structure and chemical behavior. By recognizing how electrons are distributed within atomic orbitals, we can better understand the nature of chemical bonds and the reactivity of different elements. As we delve deeper into the world of quantum mechanics and atomic theory, the significance of atomic orbitals becomes increasingly apparent, revealing the intricate dance of electrons that underpins all matter.

原子轨道的概念是理解原子结构和电子行为的基础。原子轨道可以定义为原子中找到电子的高概率区域。与经典观点中电子沿固定路径围绕原子核运行不同,量子力学模型引入了电子存在于原子核周围特定区域的想法,这些区域被称为原子轨道。每个原子轨道都有独特的形状和能量水平,这些都是由与电子相关的量子数决定的。有几种类型的原子轨道,包括s、p、d和f轨道。s轨道是球形的,最多可以容纳两个电子。p轨道呈哑铃形,最多可以容纳六个电子。d和f轨道的形状更复杂,分别可以容纳十个和十四个电子。理解这些形状至关重要,因为它们影响原子之间的相互作用,从而形成化学键。原子中原子轨道的排列通过电子配置来描述,遵循 Aufbau 原则、泡利不相容原理和洪德规则。这些原则规定了电子如何填充原子轨道,从最低能级开始,逐步填充到较高能级。例如,在碳原子中,电子配置为1s² 2s² 2p²,表示前两个电子占据1s原子轨道,接下来的两个占据2s原子轨道,最后两个填充2p原子轨道原子轨道的重要性不仅限于电子的排列。它们在决定元素的化学性质方面发挥着关键作用。外层原子轨道中电子的类型和数量决定了元素如何与其他元素反应。例如,外层原子轨道完全填充的元素通常是惰性的,不易参与化学反应,而外层不完整的元素则更具反应性。此外,原子轨道的概念对于理解分子几何和键合至关重要。当原子结合形成分子时,它们的原子轨道重叠以创建分子轨道。这种重叠可以导致单键、双键或三键的形成,具体取决于参与的原子轨道的数量。这些分子轨道的形状受到其形成所依据的原始原子轨道的影响,进一步强调了理解原子轨道在化学中的重要性。总之,研究原子轨道对于掌握原子结构和化学行为的复杂性至关重要。通过认识到电子在原子轨道中的分布,我们可以更好地理解化学键的性质和不同元素的反应性。当我们深入探讨量子力学和原子理论的世界时,原子轨道的重要性变得愈加明显,揭示了支撑所有物质的电子复杂舞蹈。

相关单词

atomic

atomic详解:怎么读、什么意思、用法

orbital

orbital详解:怎么读、什么意思、用法