atomic bond
简明释义
原子键
英英释义
An atomic bond is a type of chemical bond that occurs when atoms share or transfer electrons to achieve stability in their outer electron shells. | 原子键是一种化学键,当原子共享或转移电子以实现其外层电子壳的稳定时发生。 |
例句
1.When metals are heated, their atomic bonds 原子键 can become weaker.
当金属被加热时,它们的atomic bonds 原子键 可能会变得较弱。
2.Different types of atomic bonds 原子键 lead to various physical states of matter.
不同类型的atomic bonds 原子键 导致物质的不同物理状态。
3.The strength of an atomic bond 原子键 determines the properties of the material.
一个atomic bond 原子键 的强度决定了材料的性质。
4.In chemistry, understanding the atomic bond 原子键 is crucial for predicting molecular behavior.
在化学中,理解atomic bond 原子键 对于预测分子行为至关重要。
5.The atomic bond 原子键 between hydrogen and oxygen forms water.
氢和氧之间的atomic bond 原子键 形成水。
作文
The concept of an atomic bond is fundamental in the field of chemistry and physics, representing the force that holds atoms together to form molecules. Understanding atomic bonds is crucial for grasping how substances interact at a molecular level. An atomic bond can be categorized into several types, including ionic, covalent, and metallic bonds, each with unique characteristics and implications for the properties of the resulting compounds.Ionic bonds occur when electrons are transferred from one atom to another, leading to the formation of charged ions. This type of atomic bond typically forms between metals and non-metals. For example, in sodium chloride (table salt), sodium donates an electron to chlorine, resulting in a strong electrostatic attraction between the positively charged sodium ion and the negatively charged chloride ion. The strength of this atomic bond contributes to the high melting and boiling points of ionic compounds, making them solid at room temperature.On the other hand, covalent bonds involve the sharing of electron pairs between atoms. This type of atomic bond is commonly found in organic compounds, where carbon atoms share electrons with hydrogen, oxygen, and other elements. The shared electrons allow each atom to achieve a full outer shell, which is energetically favorable. A classic example of a covalent atomic bond is found in water (H2O), where each hydrogen atom shares an electron with the oxygen atom. The polarity of the water molecule, arising from the unequal sharing of electrons, leads to its unique properties, such as its ability to dissolve many substances and its high specific heat capacity.Metallic bonds, in contrast, are characterized by a 'sea of electrons' that are free to move around, allowing for conductivity and malleability in metals. In this type of atomic bond, metal atoms release some of their electrons, which are then shared among all the atoms in the structure. This delocalization of electrons gives metals their characteristic properties, such as luster and ductility. Understanding metallic atomic bonds is essential for applications in materials science and engineering, where the manipulation of these bonds can lead to the development of new alloys and advanced materials.In conclusion, the study of atomic bonds is vital for understanding the behavior of matter at the molecular level. Whether through ionic, covalent, or metallic bonding, the interactions between atoms dictate the physical and chemical properties of substances. As we continue to explore the world of chemistry, the significance of atomic bonds cannot be overstated, as they form the foundation of all chemical reactions and the diverse array of materials that make up our universe.
“原子键”这一概念在化学和物理学领域中是基础的,代表着将原子结合在一起形成分子的力量。理解“原子键”对于掌握物质在分子层面上的相互作用至关重要。“原子键”可以分为几种类型,包括离子键、共价键和金属键,每种类型都有其独特的特征和对所形成化合物性质的影响。离子键发生在电子从一个原子转移到另一个原子时,导致带电离子的形成。这种类型的“原子键”通常在金属和非金属之间形成。例如,在氯化钠(食盐)中,钠将一个电子捐赠给氯,从而导致正电荷的钠离子和负电荷的氯离子之间的强静电吸引力。这种“原子键”的强度使得离子化合物具有高熔点和沸点,使它们在室温下为固态。另一方面,共价键涉及原子之间电子对的共享。这种类型的“原子键”常见于有机化合物,其中碳原子与氢、氧和其他元素共享电子。共享的电子使每个原子能够达到完整的外层,这在能量上是有利的。水(H2O)中的共价“原子键”就是一个经典的例子,其中每个氢原子与氧原子共享一个电子。水分子的极性源于电子的不等分享,导致其独特的性质,例如溶解许多物质的能力和高比热容。与此不同的是,金属键的特点是“电子海”,这些电子可以自由移动,使金属具有导电性和延展性。在这种类型的“原子键”中,金属原子释放出一些电子,这些电子随后在所有原子之间共享。这种电子的去局域化赋予金属其特有的性质,如光泽和可延展性。理解金属“原子键”对于材料科学和工程中的应用至关重要,在这些领域中,对这些键的操控可以导致新合金和先进材料的发展。总之,研究“原子键”对理解物质在分子层面上的行为至关重要。无论是通过离子键、共价键还是金属键,原子之间的相互作用决定了物质的物理和化学性质。随着我们继续探索化学世界,“原子键”的重要性不容小觑,因为它们构成了所有化学反应和构成我们宇宙的多样材料的基础。
相关单词