unshared electron pair

简明释义

未共享电子对

英英释义

An unshared electron pair, also known as a lone pair, refers to a pair of valence electrons that are not involved in bonding with other atoms and are localized on a single atom.

未共享电子对,也称为孤对,是指一对价电子不参与与其他原子的键合,而是局限于单个原子上。

例句

1.A molecule with a high number of unshared electron pairs may exhibit stronger hydrogen bonding.

具有大量未共享电子对的分子可能表现出更强的氢键作用。

2.In ammonia (NH3), the nitrogen atom has one unshared electron pair which contributes to its trigonal pyramidal shape.

在氨(NH3)中,氮原子有一个未共享电子对,这使其呈三角锥形状。

3.The unshared electron pairs on the central atom can influence the bond angles in a molecule.

中心原子上的未共享电子对可以影响分子的键角。

4.In the Lewis structure of methane (CH4), there are no unshared electron pairs on the carbon atom.

在甲烷(CH4)的路易斯结构中,碳原子上没有未共享电子对

5.The presence of a unshared electron pair on oxygen is responsible for the bent shape of water (H2O).

氧原子上的未共享电子对导致水(H2O)的弯曲形状。

作文

In the world of chemistry, understanding the concept of electron pairs is crucial for grasping how atoms bond and interact with one another. Among these pairs, there exists a particular type called the unshared electron pair, which plays a significant role in determining the shape and reactivity of molecules. An unshared electron pair refers to a pair of valence electrons that are not involved in bonding with other atoms. Instead, these electrons remain localized on a single atom, influencing both the physical and chemical properties of the molecule. For example, consider water (H2O), a simple yet vital molecule for life. The oxygen atom in water has two unshared electron pairs that occupy space around it. These pairs create a bent molecular geometry, leading to water's unique properties such as its high surface tension and solvent capabilities. The presence of unshared electron pairs can significantly affect the molecule's polarity, which in turn influences how it interacts with other substances. The importance of unshared electron pairs extends beyond just water. In ammonia (NH3), the nitrogen atom has one unshared electron pair. This pair repels the three hydrogen atoms, resulting in a trigonal pyramidal shape. This geometry is essential for ammonia's behavior as a base, allowing it to accept protons in chemical reactions. Moreover, unshared electron pairs are critical in the realm of organic chemistry, where they can dictate the reactivity of functional groups. For instance, in alcohols, the oxygen atom has two unshared electron pairs. These pairs can form hydrogen bonds with other molecules, enhancing the solubility of alcohols in water and affecting their boiling points. Understanding unshared electron pairs also aids in predicting molecular interactions. When two different molecules approach each other, the presence of unshared electron pairs can lead to specific attractions or repulsions. For example, in the case of enzymes, the active site often contains unshared electron pairs that play a crucial role in binding substrates and catalyzing reactions. Furthermore, the concept of unshared electron pairs is integral in the field of coordination chemistry, where metal complexes are formed. Many transition metals can accept unshared electron pairs from ligands, leading to the formation of complex structures that have diverse applications in catalysis, materials science, and medicine. In summary, the study of unshared electron pairs is essential for anyone looking to understand the complexities of chemical bonding and molecular structure. These localized electron pairs not only influence the geometry and reactivity of molecules but also play a pivotal role in various chemical reactions and interactions. By delving into the significance of unshared electron pairs, we gain deeper insights into the behavior of matter at the molecular level, paving the way for advancements in chemistry and related fields.

在化学世界中,理解电子对的概念对于掌握原子如何结合和相互作用至关重要。在这些对中,存在一种特定类型称为未共享电子对,它在决定分子的形状和反应性方面扮演着重要角色。未共享电子对是指一对价电子未参与与其他原子结合,而是局限于单个原子上,这影响了分子的物理和化学性质。例如,考虑水(H2O),这是一个简单但对生命至关重要的分子。水中的氧原子有两个未共享电子对,占据其周围的空间。这些对形成了弯曲的分子几何形状,导致水的独特性质,如高表面张力和溶剂能力。未共享电子对的存在可以显著影响分子的极性,从而影响其与其他物质的相互作用。未共享电子对的重要性不仅限于水。在氨(NH3)中,氮原子有一个未共享电子对。这个对排斥三个氢原子,导致形成三角锥形状。这种几何形状对于氨作为碱的行为至关重要,使其能够在化学反应中接受质子。此外,未共享电子对在有机化学领域也至关重要,因为它们可以决定功能团的反应性。例如,在醇中,氧原子有两个未共享电子对。这些对可以与其他分子形成氢键,增强醇在水中的溶解度,并影响其沸点。理解未共享电子对还有助于预测分子间的相互作用。当两个不同的分子接近彼此时,未共享电子对的存在可能导致特定的吸引或排斥。例如,在酶的情况下,活性位点通常包含未共享电子对,在结合底物和催化反应中起着关键作用。此外,未共享电子对的概念在配位化学领域中也不可或缺,其中形成金属络合物。许多过渡金属可以接受来自配体的未共享电子对,导致形成具有多种应用的复杂结构,这些应用包括催化、材料科学和医学。总之,研究未共享电子对对于任何希望理解化学键合和分子结构复杂性的人来说都是必不可少的。这些局部电子对不仅影响分子的几何形状和反应性,而且在各种化学反应和相互作用中扮演着关键角色。通过深入探讨未共享电子对的重要性,我们可以更深入地了解物质在分子水平上的行为,为化学及相关领域的进步铺平道路。

相关单词

unshared

unshared详解:怎么读、什么意思、用法

pair

pair详解:怎么读、什么意思、用法