unpaired electron

简明释义

不成对电子

英英释义

An unpaired electron is an electron that is alone in an orbital and not paired with another electron, which can contribute to the magnetic properties of an atom or molecule.

未配对电子是指在一个轨道中独自存在而没有与另一个电子配对的电子,这可能会影响原子或分子的磁性特性。

例句

1.In the field of chemistry, a free radical is defined as a molecule that contains an unpaired electron 未成对电子, making it highly reactive.

在化学领域,自由基被定义为含有一个未成对电子 未成对电子的分子,使其具有高度反应性。

2.During the bonding process, atoms with unpaired electrons 未成对电子 are more likely to form covalent bonds.

在结合过程中,具有未成对电子 未成对电子的原子更可能形成共价键。

3.Magnetic materials often contain unpaired electrons 未成对电子, which contribute to their magnetic properties.

磁性材料通常含有未成对电子 未成对电子,这使其具有磁性特性。

4.In organic chemistry, understanding the behavior of unpaired electrons 未成对电子 is crucial for predicting reaction mechanisms.

在有机化学中,理解未成对电子 未成对电子的行为对于预测反应机制至关重要。

5.The presence of an unpaired electron 未成对电子 in oxygen molecules is what makes them paramagnetic.

氧分子中存在的未成对电子 未成对电子使其具备顺磁性。

作文

The concept of an unpaired electron is fundamental in the field of chemistry, particularly when discussing the behavior of atoms and molecules. An unpaired electron refers to an electron that occupies an orbital alone, without a corresponding partner with opposite spin. This characteristic plays a crucial role in determining the chemical properties of elements, especially in their reactivity and bonding capabilities.To understand the significance of unpaired electrons, it's essential to start with the basics of atomic structure. Atoms consist of a nucleus surrounded by electrons that occupy various energy levels or orbitals. Each orbital can hold a maximum of two electrons, which must have opposite spins due to the Pauli exclusion principle. When an orbital contains only one electron, this electron is termed as an unpaired electron. The presence of unpaired electrons in an atom directly influences its ability to form bonds with other atoms. For instance, elements with one or more unpaired electrons are typically more reactive than those with completely filled orbitals. Take oxygen, for example. Oxygen has six electrons in its outer shell, with two pairs in the first two orbitals and two unpaired electrons in the p-orbital. This configuration makes oxygen highly reactive, as it seeks to pair its unpaired electrons by forming bonds with other elements, such as hydrogen, resulting in water (H2O).Moreover, the concept of unpaired electrons is critical when discussing magnetic properties of substances. Atoms with unpaired electrons exhibit paramagnetism, meaning they are attracted to magnetic fields. In contrast, atoms with all electrons paired exhibit diamagnetism and are repelled by magnetic fields. This distinction is vital in various applications, including magnetic resonance imaging (MRI) and material science.In addition to reactivity and magnetism, unpaired electrons also play a significant role in the formation of free radicals. Free radicals are molecules that contain at least one unpaired electron and are known for their high reactivity. They can initiate chain reactions in biological systems, leading to processes such as aging and various diseases. Understanding how unpaired electrons contribute to the formation of free radicals has implications in fields ranging from biochemistry to pharmacology.Furthermore, the study of unpaired electrons extends beyond individual atoms to encompass molecular interactions. In complex molecules, the distribution of unpaired electrons can influence molecular geometry and stability. For instance, in organic chemistry, the presence of unpaired electrons can lead to the development of radical species, which are often intermediates in chemical reactions.In conclusion, the concept of an unpaired electron is integral to understanding various chemical phenomena. From influencing an atom's reactivity and magnetic properties to playing a crucial role in the formation of free radicals, unpaired electrons are central to many aspects of chemistry. A deeper understanding of these electrons allows scientists and researchers to manipulate chemical reactions and develop new materials and technologies, showcasing the importance of this seemingly simple yet profound concept in the realm of science.

“未配对电子”这一概念在化学领域中至关重要,特别是在讨论原子和分子的行为时。未配对电子是指独自占据一个轨道的电子,没有对应的具有相反自旋的伴侣。这个特征在决定元素的化学性质时起着关键作用,尤其是在它们的反应性和结合能力方面。要理解未配对电子的重要性,首先需要了解原子结构的基本知识。原子由一个核和围绕它的电子组成,这些电子占据不同的能级或轨道。每个轨道最多可以容纳两个电子,这两个电子必须由于泡利不相容原理而具有相反的自旋。当一个轨道仅包含一个电子时,这个电子被称为未配对电子。未配对电子在原子中存在直接影响其与其他原子形成键的能力。例如,具有一个或多个未配对电子的元素通常比那些轨道完全填满的元素更具反应性。以氧为例,氧在其外层有六个电子,其中两个成对位于前两个轨道,两个未配对电子位于p轨道。这种配置使得氧高度反应,因为它寻求通过与其他元素(例如氢)形成键来配对其未配对电子,从而形成水(H2O)。此外,未配对电子的概念在讨论物质的磁性特性时也至关重要。具有未配对电子的原子表现出顺磁性,意味着它们会被磁场吸引。相反,所有电子都成对的原子则表现出抗磁性,并被磁场排斥。这种区别在各种应用中至关重要,包括磁共振成像(MRI)和材料科学。除了反应性和磁性,未配对电子在自由基的形成中也发挥着重要作用。自由基是指至少含有一个未配对电子的分子,以其高反应性而闻名。它们可以在生物系统中引发链式反应,导致衰老和各种疾病等过程。了解未配对电子如何促进自由基的形成在生物化学和药理学等领域具有重要意义。此外,未配对电子的研究不仅限于单个原子,还包括分子间的相互作用。在复杂分子中,未配对电子的分布可以影响分子的几何形状和稳定性。例如,在有机化学中,未配对电子的存在可能导致自由基物种的发展,这些物种通常是化学反应中的中间体。总之,未配对电子的概念对于理解各种化学现象至关重要。从影响原子的反应性和磁性到在自由基形成中发挥关键作用,未配对电子是许多化学方面的核心。对这些电子的深入理解使科学家和研究人员能够操控化学反应并开发新材料和技术,展示了这一看似简单但在科学领域中深刻的概念的重要性。

相关单词

unpaired

unpaired详解:怎么读、什么意思、用法