uncertainty principle

简明释义

测不准原理

英英释义

The uncertainty principle is a fundamental concept in quantum mechanics that states it is impossible to simultaneously know both the exact position and exact momentum of a particle.

不确定性原理是量子力学中的一个基本概念,指出不可能同时精确知道一个粒子的位置和动量。

例句

1.In finance, the uncertainty principle 不确定性原理 can refer to the unpredictability of market movements.

在金融领域,不确定性原理 uncertainty principle 可以指市场波动的不可预测性。

2.The uncertainty principle 不确定性原理 illustrates that the act of measurement affects the system being observed.

不确定性原理 uncertainty principle 说明测量的行为会影响被观察的系统。

3.The uncertainty principle 不确定性原理 has profound implications for our understanding of atomic and subatomic particles.

不确定性原理 uncertainty principle 对我们理解原子和亚原子粒子具有深远的影响。

4.In quantum mechanics, the uncertainty principle 不确定性原理 states that certain pairs of physical properties cannot be simultaneously known with arbitrary precision.

在量子力学中,不确定性原理 uncertainty principle 表示某些物理属性的对不能同时以任意精度被知晓。

5.Many scientists have debated the implications of the uncertainty principle 不确定性原理 in philosophical terms.

许多科学家在哲学层面上辩论了 不确定性原理 uncertainty principle 的含义。

作文

The concept of the uncertainty principle is one of the most intriguing aspects of quantum mechanics. Formulated by physicist Werner Heisenberg in 1927, the uncertainty principle essentially states that there are fundamental limits to how precisely we can know certain pairs of properties of a particle, such as its position and momentum. This principle has profound implications not only for physics but also for our understanding of reality itself. To grasp the uncertainty principle, consider the example of trying to measure the position of an electron. If we attempt to measure its position very accurately, we will introduce a significant uncertainty in our measurement of its momentum. Conversely, if we measure the momentum with high precision, the position becomes uncertain. This trade-off is not due to limitations in our measuring instruments; rather, it is a fundamental property of nature. The uncertainty principle highlights the inherent limitations of our knowledge at the quantum level. The implications of the uncertainty principle extend beyond theoretical physics. It challenges the classical deterministic view of the universe, where everything can be predicted if we have enough information. Instead, the uncertainty principle suggests that at a fundamental level, the universe is probabilistic. This means that we can only predict the likelihood of finding a particle in a certain state, rather than its exact state. Moreover, the uncertainty principle has sparked philosophical debates about the nature of reality. If we cannot know both the position and momentum of a particle simultaneously, what does this mean for our understanding of the universe? Are we merely observers, unable to fully grasp the underlying reality? This question leads to further inquiries about the role of consciousness in observation and the impact of measurement on physical systems. In practical terms, the uncertainty principle has significant consequences in various fields, including chemistry, materials science, and even technology. For instance, in the realm of semiconductors and nanotechnology, understanding the uncertainty principle is crucial for the development of smaller and more efficient devices. As we push the boundaries of miniaturization, the effects of quantum mechanics become increasingly pronounced, and engineers must account for these uncertainties in their designs. In conclusion, the uncertainty principle is not just a technical detail of quantum mechanics; it represents a fundamental shift in our understanding of the universe. By acknowledging the limitations imposed by the uncertainty principle, we gain deeper insights into the nature of reality and the complex interplay between observation and existence. As we continue to explore the quantum world, the uncertainty principle will remain a guiding principle, reminding us of the mysteries that still lie ahead in our quest for knowledge.

不确定性原理是量子力学中最引人入胜的概念之一。它由物理学家维尔纳·海森堡于1927年提出,基本上指出我们在多大程度上可以精确地知道粒子的某些属性对,例如位置和动量,存在根本的限制。这个原理不仅对物理学有深远的影响,也对我们理解现实本身产生了深刻的影响。要理解不确定性原理,可以考虑测量电子位置的例子。如果我们试图非常准确地测量其位置,就会在动量的测量中引入显著的不确定性。相反,如果我们高精度地测量动量,位置则变得不确定。这种权衡并不是由于我们测量仪器的局限性;而是自然的基本属性。不确定性原理突显了我们在量子层面知识的固有限制。不确定性原理的影响超越了理论物理。它挑战了经典决定论的宇宙观,在这种观念中,只要我们拥有足够的信息,一切都可以预测。相反,不确定性原理表明,在基本层面上,宇宙是概率性的。这意味着我们只能预测找到粒子处于某种状态的可能性,而不是其确切状态。此外,不确定性原理引发了关于现实本质的哲学辩论。如果我们无法同时知道粒子的位置和动量,这对我们对宇宙的理解意味着什么?我们是否仅仅是观察者,无法完全掌握潜在的现实?这个问题引出了关于意识在观察中角色的进一步探讨,以及测量对物理系统影响的问题。从实际角度来看,不确定性原理在化学、材料科学甚至技术等各个领域都有重要的后果。例如,在半导体和纳米技术领域,理解不确定性原理对于开发更小、更高效的设备至关重要。随着我们推动微型化的边界,量子力学的影响变得越来越明显,工程师必须在设计中考虑这些不确定性。总之,不确定性原理不仅仅是量子力学的一个技术细节;它代表了我们对宇宙理解的根本转变。通过承认不确定性原理所施加的限制,我们获得了对现实本质的更深刻洞察,以及观察与存在之间复杂的相互作用。随着我们继续探索量子世界,不确定性原理将始终是一个指导原则,提醒我们在追求知识的过程中仍然存在的神秘事物。